Modeling and Application of Series Elastic Actuators for Force Control Multi Legged Robots

نویسندگان

  • S. Arumugom
  • S. Muthuraman
  • V. Ponselvan
چکیده

Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of “stiffer is better”. A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke’s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series Elastic Actuators for legged robots

Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of “stiffer is better”. A compliant element is pl...

متن کامل

Stiffness control of a legged robot equipped with a serial manipulator in stance phase

The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...

متن کامل

Optimal Robust Control for a Series Elastic Actuator assisting Knee Joint

Rehabilitation and assistive systems such as rotary series elastic actuators (RSEA) should provide the desired torque precisely. In this paper, to improve the life quality of those who suffer from weak knees, the control problem of a rotary series elastic actuator (RSEA) has been studied in order to generate soft human walking motion. These actuators produce the require torque, but the nonlinea...

متن کامل

Design of Backdrivable Mechanisms with Electro-Hydrostatic Actuators*

The importance of force sensitivity in robots that interact with unknown disturbance is acknowledged. For the manipulators, impedance controlled robots realized safe and robust object manipulation. For the legged mechanism, it is expected to enhance locomotion stability, since locomotion fundamentally is a manipulation of the center of mass. In order to maximize force sensitivity, both the forc...

متن کامل

A Compact Series Elastic Actuator for Bipedal Robots with Human-Like Dynamic Performance

Series-elastic actuation offers several important benefits to dynamic robots, including high-bandwidth force control and improved safety. While this approach has become common among legged robots, the lack of commercial series-elastic actuators and the unique design requirements of these robots leaves custom-built actuators as the only option. These custom actuators are often designed for nomin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0912.3956  شماره 

صفحات  -

تاریخ انتشار 2009